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We have identified the three prominent routes, namely Heagy-Hammel, fractalization, and intermittency
routes, and their mechanisms for the birth of strange nonchaotic attractors �SNAs� in a quasiperiodically forced
electronic system constructed using a negative conductance series LCR circuit with a diode both numerically
and experimentally. The birth of SNAs by these three routes is verified from both experimental and their
corresponding numerical data by maximal Lyapunov exponents, and their variance, Poincaré maps, Fourier
amplitude spectrum, spectral distribution function, and finite-time Lyapunov exponents. Although these three
routes have been identified numerically in different dynamical systems, the experimental observation of all
these mechanisms is reported here in a single second order electronic circuit.
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I. INTRODUCTION

Strange nonchaotic attractors are regarded as structures in
between regularity and chaos. They are geometrically strange
as evidenced by their fractal nature, which is common to all
chaotic systems. However, they are nonchaotic in a dynami-
cal sense because they do not show sensitivity with respect
to changes in initial conditions �as evidenced by negative
Lyapunov exponents�, just like regular systems. Following
the initial study of Grebogi et al. �1�, several theoretical as
well as experimental studies have been made pertaining to
the existence and characterization of strange nonchaotic at-
tractors �SNAs� in different quasiperiodically driven nonlin-
ear dynamical systems. In particular the SNAs have been
reported to arise in many physically relevant situations such
as the quasiperiodically forced pendulum �2�, the quantum
particles in quasiperiodic potentials �3�, biological oscillators
�4�, the quasiperiodically driven Duffing-type oscillators
�5–8�, velocity dependent oscillators �9�, electronic circuits
�10–12�, and in certain maps �13–22�. Also, these exotic at-
tractors were confirmed by an experiment consisting of a
quasiperiodically forced, buckled, magnetoelastic ribbon
�23�, in analog simulations of a multistable potential �24�,
and in a neon glow discharge experiment �25�. The SNAs are
also related to the Anderson localization in the Schrödinger
equation with a quasiperiodic potential �26,27� and they may
have a practical application in secure communication
�28–30�.

The existence of SNAs in the above physically relevant
systems has naturally motivated further intense investiga-
tions on their nature and occurrence. A question of intense
further interest is the way in which they arise and ultimately
become chaotic. In this context, several routes have been
identified in recent times and for a few of them typical
mechanisms have been found for the creation of SNAs. The
major routes by which the SNAs appear may be broadly
classified as follows: torus doubling route to chaos via SNAs

�22�, gradual fractalization of torus �17�, the appearance of
SNAs via blowout bifurcation �6�, the occurrence of SNAs
through intermittent phenomenon �12,13,19–21,31�, the for-
mation of SNAs via homoclinic collision �27�, remerging of
torus doubling bifurcations and the birth of SNAs �9�, the
existence of SNAs in the transition from two-frequency to
three-frequency quasiperiodicity �7�, the transition from
three-frequency quasiperiodicity to chaos via an SNA �4� and
the transition to chaos via strange nonchaotic trajectories on
the torus �32�. Different mechanisms have been identified for
some of the above routes, which are summarized in Table I.

Among these various routes and mechanisms for the birth
of SNAs, the Heagy-Hammel, the gradual fractalization, and
the intermittency routes and mechanisms to SNAs are quite
general and very robust to observe in a number of quasiperi-
odically forced nonlinear dynamical systems. So far, these
dynamical transitions are identified only through numerical
analysis in different dynamical systems, prominent among
being discrete and continuous flow systems. In the present
work, we consider a simple nonlinear electronic circuit sys-
tem, a second-order dissipative nonautonomous negative
conductance series LCR circuit, and investigate the dynamics
of this circuit under quasiperiodic forcing both numerically
and experimentally. We have identified that the circuit exhib-
its the three familiar dynamical transitions, namely Heagy-
Hammel, fractalization, and intermittency transitions involv-
ing SNAs. Further, the dynamical transitions are
characterized from both experimental and their correspond-
ing numerical data by the maximal Lyapunov exponents, and
their variance, Poincaré maps, Fourier amplitude spectrum,
spectral distribution function, and finite-time Lyapunov ex-
ponents.

The paper is organized as follows. In Sec. II, we present a
brief introduction of the experimental realization of the
quasiperiodically forced negative conductance series LCR
circuit with diode. In Sec. III, we describe the phase diagram
for the circuit where the regions corresponding to the
different dynamical behaviors are delineated as a function of
parameters based on numerical analysis. Section IV is de-
voted to the computer simulation studies and experimental*Electronic address: lakshman@cnld.bdu.ac.in
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confirmation of the creation of strange nonchaotic attractors
via the Heagy-Hammel route while in Sec. V the creation
of SNAs through gradual fractalization is studied both nu-
merically and experimentally. In Sec. VI, the type-I intermit-
tent route to SNA is shown to exist both numerically and
experimentally. Finally, in Sec. VII, we summarize our
results.

II. CIRCUIT REALIZATION

We consider here the simple second-order nonlinear dis-
sipative nonautonomous negative conductance series LCR
circuit with a single voltage generator introduced by us very
recently �33� and shown in Fig. 1�a�.

The circuit consists of a series LCR network, forced by
two sinusoidal voltage generators f1�t� and f2�t� �HP 33120A
series�. Two extra components, namely a p-n junction diode
�D� and a linear negative conductor gN, are connected in
parallel to the forced series LCR circuit. The negative con-
ductor used here is a standard op-amp based negative imped-
ance converter �NIC�. The diode operates as a nonlinear con-
ductance, limiting the amplitude of the oscillator. In Fig.
1�a�, v, iL, and iD denote the voltage across the capacitor C,
the current through the inductor L, and the current through
the diode D, respectively. The actual v-i characteristic of the
diode �given by Fig. 1�b�� is approximated by the usual two
segment piecewise-linear function �see Fig. 1�c�� which fa-
cilitates numerical analysis considerably. The state equations
governing the presently proposed circuit given in Fig. 1 are a
set of two first-order nonautonomous differential equations:

C
dv
dt

= iL − iD + gNv , �1a�

L
diL

dt
= − RiL − v + Ef1 sin�� f1t� + Ef2 sin�� f2t� . �1b�

Here,

iD�v� = �gD�v − V� , v � V ,

0, v � V ,
� �1c�

where gD is the slope of the characteristic curve of the diode,
Ef1 and Ef2 are the amplitudes, and � f1 and � f2 are the
angular frequencies of the forcing functions f1�t�
=Ef1 sin � f1t and f2�t�=Ef2 sin � f2t, respectively. In the ab-
sence of Ef2, the circuit �Fig. 1�a�� has been shown to exhibit
chaos and also strong chaos not only through the familiar
period-doubling route but also via torus breakdown followed
by period-doubling bifurcations �33�. In order to construct
the actual experimental circuit, the numerical simulation is
used to determine the correct parametric values for observing
strange nonchaotic attractor. The values of diode conduc-
tance gD, negative conductance gN, and break voltage V are
fixed as 1313 �S, −0.45 mS, and 0.5 V, respectively. After
some trial and error, we chose the actual experimental values
of the inductance L, capacitance C, and external frequencies
� f1 and � f2 as 50 mH, 10.32 nF, 5892 Hz, and 13 533 Hz.

In order to study the dynamics of the circuit in detail, Eq.
�1� can be converted into a convenient normalized form for
numerical analysis by using the the following rescaled vari-
ables and parameters: �= t /�LC, x=v /V, y= �iL /V���LC�,
E1=Ef1 /V, E2=Ef2 /V, �1=� f1��LC�, �2=� f2��LC�,
a=R��C /L�, b=gN��L /C�, and c=gD��L /C�.

The normalized evolution equation so obtained is

TABLE I. Routes and mechanisms of the onset of various
SNAs.

Type of route Mechanism

Heagy-Hammel �22� Collision of period-doubled torus
with its unstable parent

Gradual fractilization �17� Increased wrinkling of torus without
any interaction with nearby periodic
orbits

On-off intermittency �6� Loss of transverse stability of torus

Type-I intermittency �13� Due to saddle-node bifurcation,
a torus is replaced by SNA

Type-III intermittency �12� Subharmonic instability

Homoclinic collision �27� Homoclinic collisions of the
quasiperiodic orbits
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FIG. 1. �a� Circuit realization of a simple nonautonomous
circuit. Here, D is the p-n junction diode, and gN is negative con-
ductance. The parameter values of the other elements are fixed as
L=50.0 mH, C=10.32 nF. The external emf f1�t�=Ef1 sin � f1t and
f2�t�=Ef2 sin � f2t are the function generators �HP 33120 A�. The
values of � f1 and � f2 are chosen as 5982.0 Hz and 13 533.0 Hz,
respectively. The forcing amplitude Ef2 is fixed as 0.15 V.
The other forcing amplitude Ef1 and the resistance R are taken as
control parameters which are being varied in our analysis, �b� i-v
characteristics of the p-n junction diode and �c� two segment
piecewise-linear function.
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ẋ = y + f�x� ,

ẏ = − x − ay + E1 sin��� + E2 sin��� ,

�̇ = �1,

�̇ = �2, �2a�

where

f�x� = ��b − c�x + c , x � 1,

bx , x � 1.
� �2b�

Here the dot stands for the differentiation with respect to �.
The dynamics of Eq. �2� now depends on the parameters

a, b, c, �1, �2, E1, and E2. The rescaled parameters corre-
spond to the values b=0.990 51, c=2.89, �1=0.133 841,
�2=0.307 411, and E2=0.3. The amplitude of external qua-
siperiodic forcing E1 and the value of a �or equivalently Ef1
and R in Eq. �1�� are taken as control parameters which are
being varied in our numerical �and experimental� studies.

III. TWO PARAMETER PHASE DIAGRAM

To be concrete, we first consider the dynamics of the sys-
tem �2� and numerically integrate it. Using various charac-
teristic quantities such as Lyapunov exponents, power spec-
tral measures, and distribution of finite-time Lyapunov
exponents, we distinguish periodic, quasiperiodic, strange
nonchaotic, and chaotic attractors. In particular, the Poincaré
surface of section plot in the ��-x� plane with � modulo 2�
can clearly indicate whether an attractor possesses a geo-
metrically smooth or complicated structure. However, the es-
timation of the Lyapunov exponents for this attractor �that is
positive or negative value including zero� as well as its vari-
ance will identify whether it is a chaotic or nonchaotic one.
In addition to the fact that the Lyapunov exponents are nega-
tive for SNAs, the variance—the fluctuations in the mea-
sured value of the Lyapunov exponents on SNAs—is also
found to be large. Finer distinction among SNAs formed via
different mechanisms can be made by analyzing the nature of
the variation of Lyapunov exponents and its variance near
the transition values of the control parameters. Then we ex-
perimentally confirm the results for circuit Eq. �1� geometri-
cally by observing the phase trajectory and the power spec-
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FIG. 2. �Color online� �a� Phase diagram in the �a-E1� plane for the circuit given in Fig. 1, represented by Eq. �2� and obtained from
numerical data. 3T and 6T correspond to torus of period-3 and period-6 attractors, respectively. F, HH, and INT denote the formation of
SNAs through gradual fractalization, Heagy-Hammel, and intermittency routes, respectively. C corresponds to chaotic attractor. �b� An
enlarged version of the intermittent region is indicated in �a�.
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FIG. 3. Projection of the numerically simulated attractors of Eqs. �2� in the ��-x� plane for fixed E1=0.44 and various values of a
indicating the transition from quasiperiodic attractor to SNA through the Heagy-Hammel mechanism: �a� period-3 torus �3T� for
a=0.956 32, �b� period-6 torus �6T� for a=0.955 93, and �c� SNA at a=0.955 92.
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trum. For our experimental study of the circuit given in Fig.
1, a two dimensional projection of the attractor is obtained
by measuring the voltage v across the capacitor C and the
current iL through the inductor L and connected to the X and
Y channels of an oscilloscope. The phase trajectory obtained
in the experiment is compared with the numerical trajectory.
Then, a live picture of the corresponding power spectrum
�obtained from a digital storage oscilloscope, HP 54600 se-
ries� of the projected attractor has also been used to distin-
guish the different attractors. In particular, to quantify the
changes in the power spectrum obtained by numerically and

experimentally, we compute the so-called spectral distribu-
tion function N�	�, which is defined to be the number of
peaks in the Fourier amplitude spectrum larger than some
value, say 	. Scaling relations have been identified in the
form N�	�=log10�1/	� for the case of two-frequency quasi-
periodic attractors and N�	�=	−
, 1�
�2, for the strange
nonchaotic attractors.

Further to identify the different attractors in the two-
parameter plane the dynamical transitions are traced out by
two scanning procedures, both numerically and experimen-
tally: �i� varying E1 �or Ef1� at fixed a �=R��C /L�, and �ii�
varying a �or =R� at fixed E1 �or Ef1 /V� in a 1000�1000
grid. The resulting phase diagram in the �a-E1� parameters
space in the region a� �0.9,0.98� and E1� �0.34,0.7� is
shown in Fig. 2 which has also been verified in the corre-
sponding �R−Ef1� experimental parameter space. The vari-
ous features indicated in the phase diagram are summarized
and the main interesting features of the dynamical transitions
are elucidated in the following.

Transitions from the right to left lower down in the �a ,E1�
space, through fractalization of the period-3 �3T� quasiperi-
odic attractors to SNA and then to chaos, occur for 0.953
�a�0.955 and 0.35�E1�0.37. It is denoted as F in Fig. 2.

Moving from right to left in the middle region, one finds
a torus doubling bifurcation from a period-3 torus �3T� to a
period-6 �6T� quasiperiodic attractor and then to SNA via the
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FIG. 4. Projection of the numerically simulated attractors of
Eqs. �2� in the �x ,y� plane for fixed E1=0.44 and various values of
a indicating the transition from a quasiperiodic attractor to an SNA
through the Heagy-Hammel route: �a� period-3 torus �3T� for
a=0.956 32, �b� period-6 torus �6T� for a=0.955 93, and �c� SNA at
a=0.955 92: �i� phase trajectory in the �x-y� space; �ii� power
spectrum.
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FIG. 5. Transition from three doubled torus to SNA through
Heagy-Hammel route in region HH obtained from numerical data:
�a� the behavior of the maximal Lyapunov exponent ��� and �b� the
variance �	� for E1=0.44.

FIG. 6. �Color online� Attractors obtained experimentally from
the circuit given in Fig. 1 corresponding to Figs. 4. �a� period-3
torus �3T� for R=2109 , �b� period-6 torus �6T� for R=2106 ,
and �c� SNA at R=2104  for fixed value of Ef1=0.22 V: �i� phase
trajectory in the �v-iL� space; �ii� power spectrum.
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Heagy-Hammel �HH� mechanism. This transition occurs in
the range 0.953�a�0.958 and 0.38�E1�0.58. It is
denoted as HH in Fig. 2.

Moving higher up in the amplitude space and from right
to left, we find that SNAs and eventually chaos occur from
period three-quasiperiodic attractor via type-I intermittency
route as a is varied in the narrow range 0.949�a�0.954
and for E1 in the range 0.623�E1�0.645. It is denoted as
INT within a small box �Fig. 2�a��. In Fig. 2�b�, the enlarged
portion of the box in Fig. 2�a� shows the region of existence
of the intermittent SNA occuring between quasiperiodic and
chaotic attractors.

In this section, we have identified at least three interesting
dynamical features namely, �i� Heagy-Hammel, �ii� fractal-
ization, and �iii� type-I intermittent routes in the two-
parameter diagram. Now, we describe each one of them in
detail from the point of view of numerical analysis as well as
experimental identification as follows.

IV. HEAGY-HAMMEL ROUTE TO SNA

The first of these routes that we encounter is the Heagy-
Hammel route in which a period-2k torus gets wrinkled and
upon collision with its unstable parent the period-2k−1 torus
bifurcates into an SNA. Such a behavior has been observed
in the present quasiperiodically forced negative conductance
series LCR circuit within the range of a values, 0.953�a

�0.958, and E1 values, 0.38�E1�0.58, while the other pa-
rameters are fixed as prescribed earlier in Sec. II.

A. Numerical analysis

More specifically, let us fix the parameter E1 at E1=0.44,
while decreasing the value of a. For a=0.956 32, the circuit
equation �2� associated with Fig. 1 is found to exhibit a
period-3 torus attractor denoted as 3T �see Fig. 2� and the
Poincaré map has three smooth branches �Fig. 3�a��, whose
phase portrait and power spectrum are shown in Figs. 4�a��i�
and 4�a��ii�. As the value of a is decreased to a=0.955 93,
the attractor undergoes torus doubling bifurcation and the
corresponding period-6 quasiperiodic orbit is denoted as 6T
in Fig. 2 and the Poincaré map has six smooth branches as
seen in Fig. 3�b�. The corresponding phase portrait and
power spectrum are shown in Figs. 4�b��i� and 4�b��ii�. In the
generic case, the period doubling occurs in an infinite se-
quence until the accumulation point is reached, beyond
which chaotic behavior appears. However, with tori, in the
present case, further torus doubling does not takes place, but
the torus becomes wrinkled; that is, the truncation of the
three torus doubling begins when the six strands of the 6T
attractor become extremely wrinkled. This is because the
period-doubled six torus collides with its unstable parent,
and this occurs only for a few narrow selected parameter
intervals, when a is decreased to a=0.955 93 as shown in
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eriodic attractor, �b� strange nonchaotic attractor. Here the numerical study is indicated by filled circles, and experimental result is denoted
by filled triangles.
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FIG. 8. Distribution of finite-time Lyapunov exponents on SNAs created through the Heagy-Hammel route: �a� quasiperiodic attractor,
�b� strange nonchaotic attractor. Finite-time Lyapunov exponents calculated from numerical data are indicated by dashed lines, and from
experimental data are denoted by solid lines.
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Fig. 3�b�. For example, when the value of a is decreased to
a=0.955 92, the attractor becomes extremely wrinkled. Dur-
ing this transition, the strands are seen to come closer to the
unstable period 3T orbit and lose their continuities when the
strands of torus doubled orbit collide with an unstable parent
and ultimately result in a fractal phenomenon as shown in
Fig. 3�c� when a is decreased to a=0.955 92. The phase por-
trait and power spectrum corresponding to Fig. 3�c� are
shown in Figs. 4�c��i� and 4�c��ii�. At such a value, the at-
tractor, Fig. 3�c�, possesses a geometrically strange property
but does not exhibit sensitivity to initial conditions �the
maximal Lyapunov exponent is negative as seen in Fig. 5�a��
and so it is indeed a strange nonchaotic attractor. As a is
decreased further to a=0.954 35, the attractor has eventually
a positive Lyapunov exponent and hence it corresponds to
chaotic attractor �denoted C in Fig. 2�.

Now we examine the Lyapunov exponent for the transi-
tion from period-3 torus doubling to the SNA. During this
transition, the largest maximal Lyapunov exponent � as a
function of a for a fixed E1=0.44 remains negative, which is
shown in Fig. 5�a�. Hence the attractor is strange but non-

chaotic. We also note that there is an abrupt change in the
maximal Lyapunov exponent during the transition from a
period-3 torus doubled attractor to the SNA and its variance
�Figs. 5�a� and 5�b��. When we examine this in a sufficiently
small neighborhood of the critical value aHH=0.955 93, the
transition is clearly revealed by the Lyapunov exponent
which varies smoothly in the torus region �a�aHH� while it
varies irregularly in the SNA region �a�aHH�. It is also pos-
sible to identify this transition point by examining the vari-
ance of Lyapunov exponent, as shown in Fig. 5�b� in which
the fluctuation is small in the torus region while it is large in
the SNA region.

B. Experimental confirmation

To confirm that the above results hold good in the actual
experimental circuits �Fig. 1� also, the phase trajectory is
obtained experimentally by measuring the voltage v across
the capacitor C and the current iL through the inductor L in
the circuit �Fig. 1� and connecting them to the X and Y chan-
nels of an oscilloscope. Then, a live picture of the corre-
sponding power spectrum �obtained from a digital storage
oscilloscope, HP 54600 series� of the projected attractor has
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FIG. 9. Projection of the numerically simulated attractors of
Eqs. �2� in the ��-x� plane for fixed E1=0.34 and various values
of a indicating the transition from quasiperiodic attractor to
SNA through fractalization route. �a� period-3 torus �3T� for
a=0.954 406 and �b� SNA at a=0.954 351.
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FIG. 10. Projection of the numerically simulated attractors of
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a indicating the transition from quasiperiodic attractor to SNA
through fractalization route: �a� period-3 torus �3T� for
a=0.954 406 and �b� SNA at a=0.954 351: �i� phase trajectory in
the �x-y� plane; �ii� power spectrum.
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FIG. 12. �Color online� Attractors obtained experimentally from
the circuit given in Fig. 1 corresponding to Figs. 10. �a� period-3
torus �3T� for R=2102  and �b� SNA at R=2101  for fixed value
of Ef1=0.17 V: �i� phase trajectory �v-iL�; �ii� power spectrum.
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also been used to distinguish the different attractors. The
experimentally measured phase portraits and Fourier spectra
shown in Figs. 6 correspond to the transition from period-3
torus quasiperiodic attractor to SNA through the HH mecha-
nism as shown in Figs. 3 and 4. It has been found that the
simulated results and experimentally observed results in the
phase-space as well as power spectra are qualitatively similar
to each other. In particular, in both cases, the spectra of the
quasiperiodic attractors are concentrated at a small discrete
set of frequencies while the spectra of the SNA have a much
richer harmonic.

To distinguish further in the characteristic aspect that the
attractors depicted in Figs. 3, 4, and 6 are quasiperiodic and
strange nonchaotic, we proceed to quantify the changes in
the power spectrum. The spectral distribution �which is de-
fined as the number of peaks in the Fourier amplitude spec-
trum larger than some value say 	� for quasiperiodic attrac-
tor and SNA are shown in Figs. 7. In Figs. 7 the filled circles
and the filled triangles denote the spectral distribution ob-
tained through numerical simulation and experimental mea-
surements, respectively. The experimental data are recorded
using a 16-bit data acquisition system �AD12-16U�PCI�EH�
at the sampling rate of 200 kHz. It is found numerically
as well as experimentally that the quasiperiodic attractors
obey a scaling relationship N�	�=log10�1/	� �see Fig. 7�a��
while the SNAs satisfy a scaling power-law relationship
N�	�=	−
, 1�
�2. The approximate straight line in the
log-log plot shown in Fig. 7�b� obeys the power-law relation-
ship with a value of 
=1.9 for numerical study and 1.84 for
experimental study.

It has also been found that a typical trajectory on an SNA
actually possesses positive Lyapunov exponents in finite time

intervals, although the asymptotic exponent is negative. As a
consequence, one observes the different characteristics of
SNA created through different mechanisms by a study of the
differences in the distribution of finite-time exponents
P�N ,�� �13�. For each of the cases, the distribution can be
obtained by taking a long trajectory and dividing it into
segments of length N, from which the local Lyapunov expo-
nent can be calculated. In the limit of large N, this distribu-
tion will collapse to a � function P�N ,��→ ��−��. The de-
viations from and the approach to the limit can be very
different for SNAs created through different mechanisms.
We apply the Wolf algorithm to determine the Lyapunov ex-
ponents from the experimental data �34�. Figure 8 illustrates
the distributions for P�2000,�� which is strongly peaked
about the Lyapunov exponent when the attractor is a torus,
but on the SNA the distribution picks up a tail which extends
into the local Lyapunov exponent ��0 region. �Finite-time
Lyapunov exponents calculated from numerical data are in-
dicated by dashed lines, and experimental data are denoted
by solid lines.� This tail is directly correlated with enhanced
fluctuation in the Lyapunov exponent on SNAs. On Heagy-
Hammel SNA, the distribution shifts continuously to larger
Lyapunov exponents. Furthermore, the shapes for the torus
regions �Fig. 8�a�� and SNA regions �Fig. 8�b�� are very dif-
ferent. The results clearly confirm that the HH mechanism is
operative in the parameter regime of the present discussion.

V. FRACTALIZATION ROUTE TO SNA

The second one of the routes we have identified in the
present system is the gradual fractalization route where a
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FIG. 13. Spectral distribution function for spectra of quasiperiodic attractor and SNAs created through gradual fractalization route: �a�
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torus gets increasingly wrinkled and then transits to a SNA
without interaction �in contrast to the previous case of HH�
with a nearby unstable orbit as we change the system param-
eter. In this route a period-3k torus becomes wrinkled and
then the wrinkled attractor gradually loses its smoothness
and forms a 3k-band SNA as we change the system
parameter a for fixed value of E1.

The qualitative �geometric� structure of the attractor re-
mains more or less the same during the process. Such a phe-
nomenon has been observed in the present circuit in two
different regions indicated as F in Fig. 2 for certain ranges of
a in the regions of interest.

A. Numerical analysis

Now let us consider the phase diagram �Fig. 2� where we
have identified such type of fractalization. To exemplify the
nature of this transition, we fix the parameter E1 at E1
=0.34, and vary a in the range 0.953�a�0.955 �Fig. 2�. On
decreasing the a value, oscillations of torus �3T� in the am-
plitude direction starts to appear at a=0.954 406 �Fig. 9�a��

whose phase portrait and power spectrum are shown in Figs.
10�a��i� and 10�a��ii�. As a is decreased further to
a=0.954 351, the oscillatory behavior of the torus gradually
approaches a fractal nature. The torus �3T� attractor gets
increasingly wrinkled and transforms into an SNA at
aGF=0.954 351 as shown in Fig. 9�b�. The corresponding
phase portrait and power spectrum are shown in Figs.
10�b��i� and 10�b��ii�.

At such values, the nature of the attractor is strange �see
Fig. 9�b�� even though the largest Lyapunov exponent in Fig.
11�a� remains negative. It is very obvious from these transi-
tions that the 3 torus with three smooth branches in the
Poincaré map �Fig. 9�a�� gradually loses its smoothness and
ultimately approaches a fractal behavior via an SNA �in Fig.
9�b�� before the onset of chaos as the parameter a decreases
further. Such a phenomenon is essentially a gradual fractal-
ization of the torus as was shown by Nishikawa and Kaneko
�17� in their route to chaos via SNA. In this route, there is no
collision involved among the orbits and therefore the
Lyapunov exponent and its variance change only slowly as
shown in Figs. 11�a� and 11�b� and there are no significant
changes in its variance �see Fig. 10�b��. At even lower values
of “a,” a=0.954, the circuit exhibits chaotic oscillations as
shown in region C of Fig. 2.

B. Experimental confirmation

To confirm the numerical results further, experimentally
measured phase portraits and Fourier spectrum results corre-
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sponding to the circuit of Fig. 1 are presented in Figs. 12
which correspond to the transition from quasiperiodic attrac-
tor to SNA through gradual fractalization shown in Figs. 9
and 10. It has been noticed that the simulated results and
experimentally measured results in the phase-space as well
as power spectrum are in close agreement.

To verify further whether the attractors depicted in
Figs. 10 and 12 are quasiperiodic and strange nonchaotic
attractors, we proceed to quantify the changes in the numeri-
cally and experimentally measured power spectra. In our
analysis it has been verified that the quasiperiodic attractor
obeys a scaling relationship N�	�=log10�1/	� �see Fig.
13�a�� while the approximate straight line shown in the log-
log plot of Fig. 13�b�, satisfying the power relationship
N�	�=	−
, with an estimated value of 
=1.78 for simulation
and 
=1.9 for experimental measurement, confirms that the
attractor created through this mechanism is indeed a strange
nonchaotic attractor.

Figure 14 illustrates the distributions for P�2000,��
which is strongly peaked about the Lyapunov exponent when
the attractor is a torus, but on the SNA the distribution picks

up a tail which extends into the local Lyapunov exponent
��0 region. This tail is directly correlated with enhanced
fluctuation in the Lyapunov exponent on SNAs. On the frac-
talized SNA, the distribution shifts continuously to larger
Lyapunov exponents, but the shape remains the same for
torus regions as well as SNA regions.

VI. INTERMITTENT ROUTE TO SNA

Finally, the third of the routes that is predominant in
this system is an intermittent route in which the torus is
eventually replaced by a strange nonchaotic attractor through
an analog of the saddle-node bifurcation.

Such a phenomenon has been identified within the
range 0.623�E1�0.645 for the amplitude while the param-
eter a is decreasing from right to left in the narrow range
0.949�a�0.954 for fixed E1.

A. Numerical analysis

To illustrate the above transition, let us fix the parameter
E1 at E1=0.635 while a is decreased from a=0.951 92. Fig-
ure 15�a� shows the projection of a three-period quasiperi-
odic attractor which has three smooth branches in the
Poincaré section. The corresponding phase portrait and
power spectrum are shown in Figs. 16�a��i� and 16�a��ii�. As
a is decreased further, the attractor starts to wrinkle. On fur-
ther decrease of a=0.951 889, the attractor becomes
extremely wrinkled and has several sharp bends.

However, as “a” passes a threshold value aI=0.951 876,
an intermittent transition from the torus to the SNA occurs.
At the intermittent transition, the amplitude variation loses
its regularity and a burst appears in the regular phase �qua-
siperiodic orbit trajectory�. The duration of laminar phases in
this state is random. An example of the transition to such
SNAs is shown in Fig. 15�b�, the corresponding phase por-
trait and power spectrum are shown in Figs. 16�b��i� and
16�b��ii�. At this transition, we also note that there is an
abrupt change in the maximal Lyapunov exponent as well as
its variance corresponding to the characteristic signature of
the intermittent route �indicated in Figs. 17�a� and 17�b�� to
the SNA.

In the HH case, the points on the SNA are distributed
over the entire region enclosed by the wrinkled bounding

FIG. 19. �Color online� Attractors obtained experimentally from
the circuit given in Fig. 1 corresponding to Figs. 16. �a� period-3
torus �3T� for R=2099  and �b� SNA at R=2097  for fixed value
of Ef1=0.318 V: �i� phase trajectory �v-iL�; �ii� power spectrum.
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torus, while in the fractalization case the points on the
SNA are distributed mainly on the boundary of the torus.
Interestingly, in the present case shown in Fig. 15�b�, most
of the points of the SNA remain within the wrinkled torus
with sporadic large deviations. The dynamics at this transi-
tion obviously involves a kind of intermittency. Such an in-
termittency transition could be characterized by scaling be-
havior. The laminar phase in this case is the torus while the
burst phase is the nonchaotic attractor. In order to calculate
the associated scaling constant, we coevolve the trajectories
for two different values of a, namely, ac and another value
near to ac, while keeping identical initial conditions �xi ,�i�
and the same parameter value E1. As the angular coordinate
�i remains identical, the difference in xi allows one to com-
pute the average laminar length between the bursts. The plot
of average laminar length �l	 for this attractor reveals a
power-law relationship of the form

�l	 = �acritical − a�−�. �3�

with the estimated value of �=0.31 �see Fig. 18�. This analy-
sis also confirms that such an attractor is associated with
standard intermittent dynamics of type I described in Refs.
�35–37�.

B. Experimental confirmation

Next, we compare the simulation results in Figs. 16 and
the experimental results given in Figs. 19. The range of
parameters chosen for experimentally measured phase por-
traits and Fourier spectra results given in Figs. 19 correspond
to the transition from quasiperiodic attractor to SNA through
intermittent nature shown in Figs. 15 and 16. It has been
found that the simulated results and experimentally observed
results in the phase-space as well as power spectrum appear
to be qualitatively similar in nature. To distinguish further
that the attractors depicted in Figs. 15, 16, and 19 are quasi-
periodic and strange nonchaotic attractors, the numerically
and experimentally measured power spectra are quantified. It
has been noted that the quasiperiodic attractor obeys a scal-
ing relationship N�	�=log10�1/	� �see Fig. 20�a�� while the
SNAs created through this mechanism satisfy a scaling
power-law relationship N�	�=	−
, 1�
�2. The approxi-

mate straight line in the log-log plot shown in Fig. 20�b�
obeys the power-law relationship with a value of 
=1.86 and
1.89 for numerical simulation and experimental measured
studies, respectively.

Figure 21 illustrates the distributions for P�2000,��
which are strongly peaked about the Lyapunov exponent
when the attractor is a torus, but on the SNA the distribution
picks up a tail which extends into the local Lyapunov expo-
nent ��0 region. This tail is directly correlated with en-
hanced fluctuation in the Lyapunov exponent on SNAs. On
the intermittent SNA route, the actual shapes of distribution
on the torus and the SNA are very different.

VII. SUMMARY AND CONCLUSIONS

In this paper, various transitions from the quasiperiodic
attractors to the strange nonchaotic attractors are demon-
strated experimentally in a simple quasiperiodically driven
electronic system. Specifically, the three prominent routes,
namely Heagy-Hammel, fractalization and type-I intermit-
tent routes for the creation of SNAs are demarcated the dif-
ferent regions in the �a−E1� parameter space. First, we have
used simulation results to show the bifurcation process of
this circuit from the quasiperiodic attractors to the strange
nonchaotic attractors. Then we have experimentally observed
the existence of the strange nonchaotic attractors as a part of
the whole bifurcation process as predicted by the simulation.
The experimental observations, numerical simulations, and
characteristic analysis show that the simple dissipative qua-
siperiodically forced negative conductance series LCR cir-
cuit does indeed have strange nonchaotic behaviors. To
distinguish among the three mechanisms through which
SNAs are born, we have examined the manner in which
the maximal Lyapunov exponent and its variance change as a
function of the parameters. In addition, we have also exam-
ined the distribution of local Lyapunov exponents and found
that they take on different characteristics for different
mechanisms.

Given the ubiquity of SNA dynamics in the quasiperiodi-
cally driven systems, one of the main issues with respect to
the observation of SNAs is that this dynamical behavior
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strange nonchaotic attractor. Finite-time Lyapunov exponents calculated from numerical data are indicated by dashed lines, and from
experimental data are denoted by solid lines.

THAMILMARAN et al. PHYSICAL REVIEW E 74, 036205 �2006�

036205-10



occurs in a very narrow range of values of the control pa-
rameters. While identifying these attractors from numerical
analysis, one may wonder whether they occur due to numeri-
cal artifacts and whether they may get smeared out if the
inherent noise or parameter mismatch is included. For this
purpose, it is important to verify the underlying phenomena
experimentally to be sure about the existence of the type of
transitions to SNAs discussed in this paper. It is here that the
construction of electronic circuits like the one discussed

in this manuscript gains physical relevance as an elegant
means of experimental verification.
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